$O(17)$ and $N(1)$. This interaction does not result in any severe changes in torsion angles.

The heterocyclic D ring is cis-fused to ring C and 1,3-diaxially fused to ring E. Alternatively, it can be considered to be a component of a bridged eightmembered ring. There are several opposing interactions which determine the torsion angles in the heterocyclic six-membered ring. The fusion of the $C(4 a)$ and $C(3)$ axial substituents tends to increase the torsion angles while interactions $\mathrm{H}(4 \mathrm{r}) \cdots \mathrm{H}(15 \gamma)=$ $2 \cdot 04, \mathrm{H}(11 \mathrm{a}) \cdots \mathrm{H}(15 \gamma)=2.33$ and $\mathrm{H}(12 \beta) \cdots \mathrm{N}(1)=$ $2.72 \AA$ tend to flatten the ring and reduce the torsion angles.

Ring E is cis-fused to ring C and 1,3-diaxially fused to ring D. The diaxial fusion and interactions $\mathrm{H}(12 \alpha) \cdots \mathrm{H}(16 \gamma)=2.51, \mathrm{H}(12 \beta) \cdots \mathrm{N}(1)=2.72$ and $\mathrm{H}(13) \cdots \mathrm{H}(14 \beta)=2.23 \AA$ determine the variations in torsion angles. The eight-membered ring assumes a boat conformation. The H on $\mathrm{O}(17)$ is bonded intramolecularly to $\mathrm{N}(1)$ with $\mathrm{N}(1) \cdots \mathrm{O}(17)=2.763$, $\mathrm{N}(1) \cdots \mathrm{H}(17)=2.11$ and $\mathrm{H}(17) \cdots \mathrm{O}(17)=0.87 \AA$. $\mathrm{O}(18)$ is intermolecularly hydrogen bonded to $\mathrm{N}(6)$ with $\mathrm{N}(6) \cdots \mathrm{O}(18)=2 \cdot 891, \mathrm{~N}(6) \cdots \mathrm{H}(18)=2 \cdot 18$ and $\mathrm{H}(18) \cdots \mathrm{O}(18)=0.87 \AA$.

Aristotelinine can be considered a biological oxidation product of aristoteline. These alkaloids represent
a unique structural type which may be restricted to the genus Aristotelia.

We would like to acknowledge support for this project by the National Science Foundation (OIP74-21108), the OAS (PMC-8-1) and CONICYT of Chile and the supply of equipment by the National Science Foundation (CHE74-19742). We thank Julio Varga for his technical assistance. FASTBIOS contribution No. 39.

References

Anderson, B. F., Robertson, G., Avey, H. P., Donovan, W. F., Bick, I. R. C., Bremner, J. B., Finney, A. J. T., Preston, N. W., Gallagher, R. T. \& Russell, G. R. (1975). J. Chem. Soc. Chem. Commun. pp. 511-513.

Bittner, M., Silva, M., Gopalakrishna, E. M., Watson, W. H., Zabel, V., Matlin, S. A. \& Sammes, P. G. (1978). J. Chem. Soc. Chem. Commun. 79-80.

Bucourt, R. (1974). Topics in Stereochemistry, Vol. 8, pp. 159-224, edited by E. L. Eliel \& N. L. Allinger. New York: Wiley-Interscience.
Germain, G., Main, P. \& Woolfson, M. M. (1971). Acta Cryst. A27, 368-376.
International Tables for X-ray Crystallography (1974). Vol. IV, pp. 71-98. Birmingham: Kynoch Press.
Johnson, C. K. (1965). ORTEP. Report ORNL-3794. Oak Ridge National Laboratory, Tennessee.

Acta Cryst. (1978). B34, 3780-3781

2,3-Dihydro-2-(4-methoxyphenyl)-3-phenyl-4H-1,3,2-benzoxazaphosphorine-4-thione 2-Oxide

By C. O. Haagensen
Department of Inorganic Chemistry, Aarhus University, DK-8000 Århus C, Denmark

(Received 4 July 1978; accepted 24 July 1978)

Abstract

C}_{20} \mathrm{H}_{16} \mathrm{NO}_{3} \mathrm{PS}, M_{r}=381 \cdot 4\), monoclinic, $P 2_{1} / c, a=12.96(2), b=15.60(2), c=9.49$ (1) \AA, $\beta=103.8(2)^{\circ}, V=1863.3 \AA^{3}, Z=4, D_{c}=1.36$ $\mathrm{g} \mathrm{cm}^{-3}$. Refinement gave $R=0.056$ and $R_{w}=0.060$ for 235 parameters and 1761 significant reflexions [$I>3 \sigma(I)$]. The stereochemistry of the molecule has been established.

Introduction. The title compound was prepared by Scheibye, Pedersen \& Lawesson (1978a,b) as yellow crystals (m.p. $173^{\circ} \mathrm{C}$). The crystals were kindly provided by S. Scheibye.

A crystal $1.0 \times 0.7 \times 0.2 \mathrm{~mm}$ was mounted about c. The lattice type and space group were established from photographs taken with Cu and Mo radiations.

Fig. 1. A stereoscopic drawing of the molecule showing the numbering of the atoms.

Table 1. Fractional atomic coordinates $\left(\times 10^{4}\right)$ and their e.s.d.'s

	x	y	z
S	$5117(2)$	$437(1)$	$2642(2)$
P	$8131(1)$	$840(1)$	$5527(2)$
$\mathrm{O}(1)$	$7659(4)$	$1649(3)$	$6195(5)$
$\mathrm{O}(2)$	$8902(4)$	$1033(3)$	$4687(5)$
$\mathrm{O}(3)$	$9426(4)$	$-1490(3)$	$10506(5)$
N	$698(4)$	$409(3)$	$4490(5)$
$\mathrm{C}(1)$	$6116(5)$	$882(4)$	$3803(7)$
$\mathrm{C}(2)$	$6155(6)$	$1806(4)$	$4152(7)$
$\mathrm{C}(3)$	$6898(6)$	$2161(4)$	$5299(7)$
$\mathrm{C}(4)$	$6918(6)$	$3019(5)$	$5657(8)$
$\mathrm{C}(5)$	$6160(7)$	$3553(5)$	$4810(10)$
$\mathrm{C}(6)$	$5421(7)$	$3222(5)$	$3655(10)$
$\mathrm{C}(7)$	$5414(6)$	$2368(5)$	$3337(8)$
$\mathrm{C}(8)$	$7085(5)$	$-496(4)$	$4157(6)$
$\mathrm{C}(9)$	$6643(6)$	$-1106(5)$	$4859(7)$
$\mathrm{C}(10)$	$6782(7)$	$-1971(5)$	$4591(8)$
$\mathrm{C}(11)$	$7351(7)$	$-2200(5)$	$3617(9)$
$\mathrm{C}(12)$	$7784(6)$	$-1590(6)$	$2911(9)$
$\mathrm{C}(13)$	$7662(6)$	$-731(5)$	$3183(7)$
$\mathrm{C}(14)$	$8544(5)$	$155(4)$	$7030(6)$
$\mathrm{C}(15)$	$9428(5)$	$-361(5)$	$7150(7)$
$\mathrm{C}(16)$	$9745(5)$	$-921(4)$	$8280(7)$
$\mathrm{C}(17)$	$9183(5)$	$-961(4)$	$9347(7)$
$\mathrm{C}(18)$	$8293(6)$	$-442(5)$	$9240(7)$
$\mathrm{C}(19)$	$7977(5)$	$111(5)$	$8103(8)$
$\mathrm{C}(20)$	$10250(7)$	$-2131(5)$	$10575(9)$

Intensities were collected on a computer-controlled Supper diffractometer with graphite-monochromated Mo $K \kappa$ radiation, a scintillation counter and a pulseheight analyser. 4366 independent reflexions were measured by the background-peak-background method out to $\sin \theta=0.5 .1761$ significant reflexions with $I>3 \sigma(I)$ were used in the subsequent calculations. No correction was applied for absorption.
The structure was determined with MULTAN (Germain, Main \& Woolfson, 1971). Coordinates, anisotropic thermal parameters and a scale factor were refined by full-matrix least-squares calculations. The positions of 13 H atoms attached to the aromatic rings were calculated and included in the refinement but the geometrical and thermal parameters of the H atoms were not refined. The final $R=0.056$ and $R_{w}=0.060$ for 235 parameters and 1761 significant reflexions $[I>3 \sigma(I)]$. Atomic coordinates are listed in Table 1.*

Discussion. Scheibye, Pedersen \& Lawesson (1978a,b) showed that salicylanilide reacts with the dimer of p-methoxyphenylthioxophosphine sulphide to give the corresponding thioamide (yield 51%), but in addition

[^0]Table 2. Bond lengths (\AA) and their e.s.d.'s

$\mathrm{P}-\mathrm{N}$	$1.710(6)$	$\mathrm{C}(8)-\mathrm{C}(9)$	$1.363(9)$
$\mathrm{N}-\mathrm{C}(1)$	$1.376(8)$	$\mathrm{C}(9)-\mathrm{C}(10)$	$1.394(10)$
$\mathrm{C}(1)-\mathrm{C}(2)$	$1.477(9)$	$\mathrm{C}(10)-\mathrm{C}(11)$	$1.361(11)$
$\mathrm{C}(2)-\mathrm{C}(3)$	$1.385(9)$	$\mathrm{C}(11)-\mathrm{C}(12)$	$1.360(12)$
$\mathrm{C}(3)-\mathrm{O}(1)$	$1.391(8)$	$\mathrm{C}(12)-\mathrm{C}(13)$	$1.382(10)$
$\mathrm{O}(1)-\mathrm{P}$	$1.599(5)$	$\mathrm{C}(13)-\mathrm{C}(8)$	$1.369(9)$
$\mathrm{P}-\mathrm{O}(2)$	$1.451(5)$	$\mathrm{C}(14)-\mathrm{C}(15)$	$1.383(9)$
$\mathrm{P}-\mathrm{C}(14)$	$1.760(7)$	$\mathrm{C}(15)-\mathrm{C}(16)$	$1.368(9)$
$\mathrm{N}-\mathrm{C}(8)$	$1.459(8)$	$\mathrm{C}(16)-\mathrm{C}(17)$	$1.383(10)$
$\mathrm{C}(1)-\mathrm{S}$	$1.641(7)$	$\mathrm{C}(17)-\mathrm{C}(18)$	$1.393(9)$
$\mathrm{C}(3)-\mathrm{C}(4)$	$1.380(10)$	$\mathrm{C}(18)-\mathrm{C}(19)$	$1.365(10)$
$\mathrm{C}(4)-\mathrm{C}(5)$	$1.388(11)$	$\mathrm{C}(19)-\mathrm{C}(14)$	$1.393(9)$
$\mathrm{C}(5)-\mathrm{C}(6)$	$1.373(11)$	$\mathrm{C}(17)-\mathrm{O}(3)$	$1.351(8)$
$\mathrm{C}(6)-\mathrm{C}(7)$	$1.365(11)$	$\mathrm{O}(3)-\mathrm{C}(20)$	$1.453(9)$
$\mathrm{C}(7)-\mathrm{C}(2)$	$1.391(10)$		

Table 3. Angles $\left({ }^{\circ}\right)$ and their e.s.d.'s

1) $-\mathrm{P}-\mathrm{N}$	$100 \cdot 2$ (3)	$\mathrm{C}(5)-\mathrm{C}(6)-\mathrm{C}(7)$	120.7 (8)
$\mathrm{O}(1)-\mathrm{P}-\mathrm{O}(2)$	115.6 (3)	$\mathrm{C}(6)-\mathrm{C}(7)-\mathrm{C}(2)$	121.7 (8)
$\mathrm{O}(1)-\mathrm{P}-\mathrm{C}(14)$	103.2 (3)	$\mathrm{N}-\mathrm{C}(8)-\mathrm{C}(9)$	120.0 (6)
$\mathrm{O}(2)-\mathrm{P}-\mathrm{N}$	112.5 (3)	$\mathrm{N}-\mathrm{C}(8)-\mathrm{C}(13)$	119.7 (6)
$\mathrm{O}(2)-\mathrm{P}-\mathrm{C}(14)$	$117 \cdot 1$ (3)	C(9)-C(8)-C(13)	120.3 (7)
N-P--C(14)	106.4 (3)	$\mathrm{C}(8)-\mathrm{C}(9)-\mathrm{C}(10)$	119.9 (7)
$\mathrm{P}-\mathrm{N}-\mathrm{C}(1)$	124.2 (5)	$\mathrm{C}(9)-\mathrm{C}(10)-\mathrm{C}(11)$	119.6 (7)
$\mathrm{P}-\mathrm{N}-\mathrm{C}(8)$	113.4 (5)	$\mathrm{C}(10)-\mathrm{C}(11)-\mathrm{C}(12)$	120.4 (8)
(1)-N-C(8)	121.4 (6)	$\mathrm{C}(11)-\mathrm{C}(12)-\mathrm{C}(13)$	120.5 (8)
C(1)-C(2)	115.9 (6)	$\mathrm{C}(12)-\mathrm{C}(13)-\mathrm{C}(8)$	119.4 (7)
-C(1)-S	121.2 (5)	$\mathrm{P}-\mathrm{C}(14)-\mathrm{C}(15)$	120.4 (5)
(2)-C(1)-S	122.9 (6)	$\mathrm{P}-\mathrm{C}(14)-\mathrm{C}(19)$	120.8 (5)
$\mathrm{C}(1)-\mathrm{C}(2)-\mathrm{C}(3)$	$123 \cdot 1$ (7)	$\mathrm{C}(15)-\mathrm{C}(14)-\mathrm{C}(19)$	118.9 (7)
$\mathrm{C}(1)-\mathrm{C}(2)-\mathrm{C}(7)$	120.6 (7)	$\mathrm{C}(14)-\mathrm{C}(15)-\mathrm{C}(16)$	121.6 (7)
$\mathrm{C}(3)-\mathrm{C}(2)-\mathrm{C}(7)$	116.3 (7)	$\mathrm{C}(15)-\mathrm{C}(16)-\mathrm{C}(17)$	119.4 (7)
$\mathrm{C}(2)-\mathrm{C}(3)-\mathrm{O}(1)$	120.7 (7)	$\mathrm{C}(16)-\mathrm{C}(17)-\mathrm{C}(18)$	119.4 (7)
$\mathrm{C}(2)-\mathrm{C}(3)-\mathrm{C}(4)$	123.4 (7)	$\mathrm{C}(16)-\mathrm{C}(17)-\mathrm{O}(3)$	124.3 (7)
$\mathrm{O}(1)-\mathrm{C}(3)-\mathrm{C}(4)$	115.9 (7)	$\mathrm{C}(18)-\mathrm{C}(17)-\mathrm{O}(3)$	116.3 (7)
$\mathrm{C}(3)-\mathrm{O}(1)-\mathrm{P}$	119.6 (4)	$\mathrm{C}(17)-\mathrm{C}(18)-\mathrm{C}(19)$	120.8 (7)
$\mathrm{C}(3)-\mathrm{C}(4)-\mathrm{C}(5)$	118.0 (8)	$\mathrm{C}(18)-\mathrm{C}(19)-\mathrm{C}(14)$	119.9 (7)
$\mathrm{C}(4)-\mathrm{C}(5)-\mathrm{C}(6)$	120.0 (8)	$\mathrm{C}(17)-\mathrm{O}(3)-\mathrm{C}(20)$	118.9 (6)

two P-containing heterocyclic systems were isolated namely $\mathrm{C}_{20} \mathrm{H}_{16} \mathrm{NO}_{3} \mathrm{PS}$ (yield 21%, m.p. $173{ }^{\circ} \mathrm{C}$) and $\mathrm{C}_{20} \mathrm{H}_{16} \mathrm{NO}_{2} \mathrm{PS}_{2}$ (yield 8%, m.p. $149^{\circ} \mathrm{C}$).

It was not possible to determine the structures of these P-containing heterocyclic compounds on the basis of analytical and spectral data and therefore the molecular structure of $\mathrm{C}_{20} \mathrm{H}_{16} \mathrm{NO}_{3} \mathrm{PS}$ was established by X-ray diffraction analysis.

Fig. 1 is a stereoscopic drawing of the molecule showing the numbering of the atoms. Bond distances are given in Table 2, and angles in Table 3.

References

Germain, G., Main, P. \& Woolfson, M. M. (1971). Acta Cryst. A27, 368-376.
Scheibye, S., Pedersen, B. S. \& Lawesson, S.-O. (1978a). Bull. Soc. Chim. Belg. 87, 229-238.
Scheibye, S., Pedersen, B. S. \& Lawesson, S.-O. (1978b). Bull. Soc. Chim. Belg. 87. Submitted.

[^0]: * Lists of structure factors and anisotropic thermal parameters have been deposited with the British Library Lending Division as Supplementary Publication No. SUP 33796 (13 pp .). Copies may be obtained through The Executive Secretary, International Union of Crystallography, 5 Abbey Square, Chester CH 1 2HU, England.

